Discovering Hierarchical Consolidated Models from Process Families

نویسندگان

  • Nour Assy
  • Boudewijn F. van Dongen
  • Wil M. P. van der Aalst
چکیده

Process families consist of different related variants that represent the same process. This might include, for example, processes executed similarly by different organizations or different versions of a same process with varying features. Motivated by the need to manage variability in process families, recent advances in process mining make it possible to discover, from a collection of event logs, a generic process model that explicitly describes the commonalities and differences across variants. However, existing approaches often result in flat complex models where it is hard to obtain a comparative insight into the common and different parts, especially when the family consists of a large number of process variants. This paper presents a decomposition-driven approach to discover hierarchical consolidated process models from collections of event logs. The discovered hierarchy consists of nested process fragments and allows to browse the variability at different levels of abstraction. The approach has been implemented as a plugin in ProM and was evaluated using synthetic and real-life event logs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BPMN Miner 2.0: Discovering Hierarchical and Block-Structured BPMN Process Models

We present BPMN Miner 2.0: a tool that extracts hierarchical and block-structured BPMN process models from event logs. Given an event log in XES format, the tool partitions it into sub-logs (one per subprocess) and discovers a BPMN process model from each sub-log using existing techniques for discovering BPMN process models via heuristics nets or Petri nets. A drawback of these techniques is th...

متن کامل

Discovering Hierarchical Process Models Using ProM

Process models can be seen as “maps” describing the operational processes of organizations. Traditional process discovery algorithms have problems dealing with fine-grained event logs and lessstructured processes. The discovered models (i.e., “maps”) are spaghettilike and are difficult to comprehend or even misleading. One of the reasons for this can be attributed to the fact that the discovere...

متن کامل

Explaining the Concept and Models of Serendipity In Information Search Process

Background and Aim: Searching for information is not always a targeted activity; it can also be done involuntarily. The serendipity has the ability to find information randomly and as something happy, something unexpected, or a pleasant surprise. This paper examines and analyzes the concept of serendipity and its models in the process of information searching. Methods: The present study uses a ...

متن کامل

Analysis and Investigation of Landslide Hazard Zoning using Hybrid Model of Hierarchical Analysis and Surface Density

Identification of susceptible areas to landslide occurrence is one of the basic measures for reduction of the possible risk and hazard management. The main goal of this research is to compare the applicability of two statistical landslide hazard zonation models, valuing area accumulation and Analytical Hierarchy Process (AHP),in Ziarat Watershed, Gorgan, Golestan Province.In a review of previou...

متن کامل

Learning Hierarchical Partially Observable Markov Decision Process Models for Robot Navigation

| We propose and investigate a general framework for hierarchical modeling of partially observable environments, such as oÆce buildings, using Hierarchical Hidden Markov Models (HHMMs). Our main goal is to explore hierarchical modeling as a basis for designing more eÆcient methods for model construction and useage. As a case study we focus on indoor robot navigation and show how this framework ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017